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Abstract

We derive an explicit expression for the penalty parameter of the interior penalty method for elliptic problems. The

expression yields a coercive bilinear form, and is valid for general meshes comprising of (geometrically nonconforming)

simplical elements.
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1. Introduction

The interior penalty (IP) method devised in the late 1970s [1] is a type of discontinuous Galerkin method

for the spatial discretization of elliptic partial differential equations. The IP method, like other discontin-

uous Galerkin methods, has advantages over the classical continuous Galerkin method in facilitating

hp-adaptivity and yielding block diagonal mass matrices important in time-dependent problems. Moreover,

the IP method gives a symmetric, locally conservative, and small-stencil discretization. This last property, in
which the degrees of freedom of each element couple only with those of its immediate neighbors, is critical

in reducing memory requirements and achieving efficient parallelization in large scale computations.

Despite its early introduction and its advantages, the IP method has not been popular. One drawback to

this scheme is that it requires the user to specify a mesh-dependent parameter, known as a penalty param-

eter. If the value of this parameter is not sufficiently large, the approximate solution is unstable. 1 On the

other hand, an arbitrarily large value of the penalty parameter degrades the performance of the iterative
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solver of the linear system arising from the IP discretization, as shown in Section 2. In real applications,

where highly anisotropic and heterogeneous mesh geometries are used and in adaptive algorithms, where

varying approximation orders are also used, it is difficult to know a priori the minimum acceptable value

of the penalty parameter. Therefore, the objective of this paper is to derive an explicit expression for the

value of the penalty parameter guaranteed to give a stable solution. We consider a domain partitioned into
triangular or tetrahedral elements in two or three space dimensions.

Before deriving this expression, we briefly describe the IP method and show the effect of the penalty

parameter on the overall efficiency of the scheme.
2. Interior penalty method

We seek the IP formulation of the Poisson equation with Dirichlet boundary conditions:
� Du ¼ f in X; ð1aÞ
u ¼ g on oX; ð1bÞ
where X is a polygonal domain of dimension d = 1, 2, or 3.

We first introduce some notation. Let K+ and K� be two adjacent elements in Th, a triangulation of X;
let x be an arbitrary point of the interior set e = oK� \ oK+, which is assumed to have non-zero dimension
(d � 1) and is referred to as a face; and let n� and n+ be the corresponding normal vectors at that point. Let

u be a smooth function inside each element K± and let us denote by u± the trace of u on e from the interior

of K±. Then, we define the mean {Æ} and the jump sÆb at x 2 e as
fug :¼ ðuþ þ u�Þ=2; sut :¼ uþnþ þ u�n�:
For a point x on the boundary set oK \ oX with normal vector n, we define the trace operators as
fug :¼ u; sut :¼ un:
The mean of a vector-valued function is defined in a similar way. We also denote by CI the union of all
interior sets e, and we set C = CI [ oX.

We take the discontinuous approximation to the exact solution u, uh, in the finite element space Vh,

where
V h :¼ fv 2 L2ðXÞ j vjK 2 QkK ðKÞ 8K 2 Thg:
Here, QkK
(K) is the set of polynomials of degree at most kK on K, kP 0. The approximate solution is then

defined by requiring that
aðuh; vhÞ ¼ F ðvhÞ 8uh; vh 2 V h;
where
aðu; vÞ ¼
X
K

Z
K
ru � rvdx�

Z
C
ðsvt � frug þ sut � frvgÞdsþ

Z
C
lsut � svtds; ð2aÞ

F ðvÞ ¼
Z
X
fvdx�

Z
oX

grv � nds: ð2bÞ
The last term on the r.h.s of (2a) is defined for interior and boundary faces, C. This is the penalty term,

which is added to enforce the coercivity of the bilinear form a(u,v). We must specify a value for the penalty

parameter l that ensures the coercivity of the bilinear form and, thus, the stability of the approximate solu-
tion. In previous work, l has only been defined to within a multiplicative constant. For example, Arnold [1]
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defined l = c0/le, where le = diam(e), and c0 is a large unknown positive constant. In the context of the

mixed hp-discontinuous Galerkin finite element method, Schötzau et al. [10] defined l = gh�1k2, where

h = min(hK+, hK�), k = max(kK+, kK�), and hK = diam(K), again leaving g as a large unknown positive

constant.

Unfortunately, the above expressions for l are less than optimal in practice, because a large value of l
has a detrimental effect on the conditioning of the matrix that represents the bilinear form a(u,v). As proved

by Castillo [3] for all approximating polynomial degrees, the spectral condition number of this matrix in L2

norm grows linearly with l (see Theorem 3.4 in [3]). It is therefore expected that the magnitude of l will

affect the overall efficiency of the iterative solver of the system arising from the IP discretization.

To further investigate this, we conducted the following experiment. Using the nodal high order IP meth-

od, we discretized (1a) and (1b) with g = 0 and f = 2p2sin(px) sin(py), on the square domain [�1,1] · [�1,1].

The corresponding exact solution is u = sin(px)sin(py). Our nodal basis was the Lagrange polynomials

calculated based on the nodal set of Hesthaven [6] defined on the standard triangle. The domain was par-
titioned once into 72 structured triangles and once into 72 unstructured (heterogeneous) triangles as shown

in Figs. 1(a) and (b), respectively. To solve the resulting linear system, we used the preconditioned conju-

gate gradient method. The preconditioner was a two-level element-based Schwarz preconditioner. Its local

part corresponded to the IP discretization on each element, similar to that of Feng and Karakashian [4],

and its global coarse part corresponded to the IP discretization on the same mesh but with the lower

approximation order k = 1. Our implementation was based on the algorithm oriented mesh database

(AOMD) [9] and portable, extensible toolkit for scientific computing (PETSc) [7,8]. We carried out simu-

lations using different values of l and with the range of approximation orders (k = 2, . . ., 6). The initial guess
for the conjugate gradient iterations was a vector with random entries confined to the interval [0,1] and the

stopping criterion was a relative residual smaller than 10�11. The results are shown in Figs. 1(c) and (d) for

the structured and unstructured meshes, respectively. Although the iteration counts are higher for the

unstructured mesh, it is clear that the iteration counts in both cases grow almost logarithmically with l,
implying that arbitrarily large values of l yield unacceptably large iteration counts. It is therefore clear that

an explicit expression for the penalty parameter would be useful, so as to guarantee coercivity while

minimizing computational expense.
3. Explicit expression for the penalty parameter

Here, we derive an explicit expression for the penalty parameter l for a d-dimensional simplex. Our

derivation is based on the results of Warburton and Hesthaven [11] on trace inverse inequalities. Using

orthogonal polynomials, they proved the following inequality for a simplicial element K and "v 2 Qk(K):
Z
e
v2 ds 6

ðk þ 1Þðk þ dÞ
d

AðeÞ
VðKÞ

Z
K
v2 dx; ð3Þ
where for d = 3, A and V denote area and volume, respectively, and for d = 2, they denote length and

area, respectively. For d = 1, Að�Þ ¼ 1 and V denotes length (see Theorems 2–4 in [11]).

We must find l such that the bilinear form a(u,v) is coercive, i.e., so that there exists a positive constant cs
such that
aðv; vÞ P cskvk2h 8v 2 V h; ð4Þ

where
aðv; vÞ ¼
X
K

Z
K
ðrvÞ2 dx� 2

Z
C
svt � frvgdsþ

Z
C
lsvt2 ds ð5Þ
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Fig. 1. (a) The computational domain used for tests partitioned into 72 structured triangular elements. (b) The same domain

partitioned into 72 unstructured (heterogeneous) triangular elements generated using Gmsh software [5]. (c) and (d) The number of

preconditioned conjugate gradient (PCG) iterations needed to solve the Poisson problem vs. the penalty parameter l using meshes in

(a) and (b), respectively. The nodal high order IP method was used, with the range of approximation orders (k = 2, . . ., 6).

404 K. Shahbazi / Journal of Computational Physics 205 (2005) 401–407
and
kvk2h ¼
X
K

jvj21;K þ
Z
C
svt2 ds
with the seminorm jÆj1,K defined over H1(K) by
jvj21;K ¼
Z
K
ðrvÞ2 dx:
We first find a bound on the negative term on the r.h.s. of (5). Using the arithmetic–geometric mean

inequality ab 6 (�e/2)a
2 + (1/2�e)b

2 with �e > 0 yields
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Z
e
svt � frvgds 6 �e

2

Z
e
svt2 dsþ 1

2�e

Z
e
frvg2 ds 8e 2 C:
Adding the above inequality over all e, noting that on CI, {$v}
2 = ($v+)2/4 + ($v�)2/4 + ($v+ Æ $v�)/2 and

on oX, {$v}2 = ($v)2, and using the inequality a2 + b2 + 2ab 6 2a2 + 2b2 yields
Z
C
svt � frvgds 6

X
e2C

�e
2

Z
e
svt2 dsþ

X
e2CI

1

2�e

Z
e

1

2
ðrvþÞ2 þ 1

2
ðrv�Þ2

� �
dsþ

X
e2 oX

1

2�e

Z
e
ðrvÞ2 ds:
Substituting the above inequality in (5), and then using (3) yields
aðv; vÞ P
X
K

Xn

ie¼1

ce;K
cK

� ce;K
�e

� �Z
K
ðrvÞ2 dxþ

X
e2C

Z
e
ðl� �eÞsvt2 ds; ð6Þ
where
ce;K ¼
ðkKþ1ÞðkKþdÞ

d
AðeÞ
VðKÞ e 2 oX;

ðkKþ1ÞðkKþdÞ
d

AðeÞ=2
VðKÞ e 2 CI ;

8<
:

cK ¼ ðkK þ 1ÞðkK þ dÞ
d

½AðoK n oXÞ=2þAðoK \ oXÞ�
VðKÞ K 2 Th: ð7Þ
In (6), ie denotes the local index of face e restricted to the element K, and n denotes the total number of faces

of each element K. To yield a positive r.h.s in (6), it is sufficient to choose �e P cK for e 2 oX,
�e P max(cK+, cK�) for e 2 CI, and l P �e. Thus, we choose the local penalty parameter le as
le ¼ cK 8e 2 oX; ð8aÞ

le ¼ maxðcKþ ; cK�Þ 8e 2 CI : ð8bÞ

Now, if we set
c1 ¼ min
K;e

ce;K
cK

� ce;K
�e

� �
8e 2 C; K 2 Th;

c2 ¼ min
e
ðl� �eÞ 8e 2 C;
we obtain
aðv; vÞ P c1
X
K

Z
K
ðrvÞ2 dxþ c2

Z
C
svt2 ds;
Finally, if we choose cs = min(c1, c2), the coercivity of the bilinear form, (4), results.

Remark 1. The penalty expression in (8a) and (8b) is defined for each face e 2 C and depends on the

geometries and approximating polynomial orders within the elements sharing e. Obviously, a global bound

for the penalty parameter can be derived as
l ¼ max
e

ðleÞ: ð9Þ
Remark 2. Our estimation in (9) is sharp, which we demonstrate by the following numerical

experiment. By once again solving Poisson Eq. (1a) and (1b) using the methodology of Section 2

and the structured triangular mesh in Fig. 1(a), we computed the maximum nodal error versus l for

polynomial approximation orders k = 1, . . ., 8 (Fig. 2). It can be seen that the solution is unstable for
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Fig. 2. Maximum nodal error vs. penalty parameter l for different orders of approximation k = 1, . . ., 8; the triangles represent the

values of the penalty parameter calculated using Eq. (9).
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l < l* (i.e., a small variation in the penalty parameter yields a large variation in the field variable u)

and stable for l > l* (i.e., variations in l yields almost no variations in u). The critical values of penalty
parameter l* are approximately 10,50,50,90,90,150,200 and 200 for k = 1, . . ., 8, respectively. On the

same figure, we also show the value of the penalty parameter computed using Eq. (9). We observe that

the estimation based on (9) yields a stable solution and it is roughly three times larger than l* at each

k. Based on the results of Fig. 1(c), this means that selecting l according to Eq. (9) guarantees a stable

solution at a computational cost within a factor of roughly 1.2 of that of the (unknown) optimal

penalty parameter, l*, for the higher approximation orders (k = 6, 7 and 8), and at least for the mesh

used in this study.

Remark 3. For the case of general meshes, when the elements are not face-to-face including those with

hanging nodes, an explicit expression for the penalty parameter for a face ef shared by a collection of

adjacent elements {Kiji = 1, . . ., N} can be defined as
lef ¼ maxðcKiÞ; i ¼ 1; . . . ;N ; ð10Þ
where cKi
is computed using (7). Following the above procedure, it is proved that choosing the penalty

parameter based on (10) guarantees the coercive bilinear form for general meshes.

Remark 4. Through a similar procedure, an explicit expression for the penalty parameter of the

discontinuous Galerkin method of Baker [2] can be derived. The same formulas (8a) and (8b) and (10) are

valid in this method, but with a slightly different cK
cK ¼ ðkK þ 1ÞðkK þ dÞ
d

AðoKÞ
VðKÞ K 2 Th:
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